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• Machinery Vibration Trouble Shooting

• Fault Diagnostics Based on Forcing Functions

• Fault Diagnostics Based on Specific Machine
Components

• Fault Diagnostics Based on Specific Machine Types

• Automatic Diagnostic Techniques

• Non-Vibration Based Machine Condition Monitoring 
and Fault Diagnosis Methods
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Extraction of meaningful information from data 
available and linking it automatically to known fault 
types.

Difficult for many reasons.

• Diagnosis is often made using a wide array of 
data/information.

• Diagnosis is not often possible until the fault is 
well developed.

• A wide range of known fault samples is usually 
needed to diagnose existing conditions.
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Difficult, but not impossible.

Application of amplitude limits on FFT based 
frequency spectra within different frequency bands 
(Masks).

Automatic Diagnostic Techniques
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Automatic Diagnostic Techniques
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Constant Percentage Bandwidth Acceptance Limits.



Model Based Frequency Spectra
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Mathematical model provides description of system 
response.

Changes in the model are sensitive to changes in the 
system (faults).

• Auto-Regressive (AR) models.

• Auto-Regressive Moving Average (ARMA) 
models.

• Minimum Variance (MV).

• Prony Models, etc.



Model Based Frequency Spectra
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3 steps

1. Selection of an appropriate model type.

2. Calculation of the model parameters and 
determination of the optimum model 
order (size).

3. Calculation of the spectral estimate.
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Selection of 
Appropriate 
Model Type
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Selection of 
Appropriate 
Model Type
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Selection of Appropriate Model Type

Typical AR Process 
Autocorrelation 
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Selection of Appropriate Model Type
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Autocorrelation function from sampled rolling 
element bearing vibration data.



November 8, 2010 Page 12

Selection of Appropriate Model Type

Model parameters represent a weighted function 
(series of terms) that, when used as a filter with pure 
noise (random dynamic data) will generate the 
original time series used to make the model.

Contain all the valuable information required to 
reproduce the original signal (data compression).

Contain fault classification information.
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Calculation of Model Parameters

Yule – Walker Method
Yule, G.U., “On a Method of Investigating Periodicities in Distributed Series with 
Special Reference to Wolfer’s Sunspot Numbers”, Transactions of the Royal Statistical 
Society of London, Series A, Vol.226, p267-298, July 1927.

Walker, G., “On Periodicity in Series of Related Terms”, Transactions of the Royal 
Statistical Society of London, Series A, Vol.231, p518-532, 1931

Levinson – Durbin Algorithm
Levinson, N., “The Wiener (root mean square) Error Criterion in Filter Design and 
Prediction”, Journal of Mathematics and Physics, Vol.25, p261-278, 1947.

Durbin, J., “The Fitting of Time Series Models”, The International Institute of Statistical 
Review, Vol.28, p223-244, 1960.

Wiggins, R.A. and E.A. Robinson, “Recursive Solutionto the Multichannel Filtering 
Problem”, Journal of Geophysical Research, Vol.70, No.8, p1885-1891, 1965.
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Calculation of Model Parameters

Forward Linear Prediction
Kay, S.M., “Modern Septral Estimation: Theory and Application”, Prentice-Hall, 
Englewood Cliffs, New Jersey, USA, 1988.

Kay S.M. and S.L. Marple, “Spectral Analysis: A Modern Perspective”, Proceedings of 
the IEEE, Vol.69, No.11, p1380-1419, November 1981.

Morf, M., B. Dickinson, T. Kailath and A. Vieira, “Efficient Solution of Covariance 
Equations for Linear Prediction”, IEEE Transactions on Acoustics, Speech and Signal 
Processing, Vol.ASSP-25, p429-433, October 1977.

Forward-Backward Linear Prediction
Marple, S.L., “A New Autoregressive Spectrum Analysis Algorithm”, IEEE 
Transactions on Acoustics, Speech and Signal Processing, Vol.ASSP-28, p441-454, 
August 1980.

Burg Method
Burg, J.P., “Maximum Entropy Spectrum Analysis”, Proceedings of the 37th Meeting of 
the Society of Exploration Geophysicists, Oklahoma City, Oklahoma, USA, October 1967.
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Calculation of Model Parameters

Basic Procedure
• Use the covariance function derived from a 

given data set (time series) to generate a 
set of model parameters.

• Filter some random data with the new model 
and try to generate the original data set.

• Compare time series data from model to the 
original.

• Adjust the model parameters in some way to 
reduce the error between model based time 
series and original.

• Repeat until the error is suitably small.
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Determine the Optimum Model Order

Estimation criteria for optimum AR model order selection
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Determine the Optimum Model Order

Final Prediction Error (FPE) Loss Function 
for Rolling Element Bearing Data
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Determine the Optimum Model Order

Rolling Element Bearing Outer Race Fault AR Spectra
Increasing Model Orders
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Calculation of Spectral Estimate
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Calculation of Spectral Estimate

AR model-based spectral estimate
Sine waves in noise
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Calculation of Spectral Estimate

FFT-based spectral estimate
Sine waves in noise
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Example

Vibration Signal
Outer Race Fault on a rolling Element Bearing
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Example

Vibration Signal
After High Pass Filtering
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Example

Vibration Signal
After Rectification
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Example

AR Frequency Spectrum of Outer Race Fault
(Model Order 20)
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Example

AR Frequency Spectrum of Outer Race Fault
(Model Order 40)
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Example

AR Frequency Spectrum of Outer Race Fault
(Model Order 60)
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Example

AR Model Parameters
(Model Order 20)
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Example

AR Model Parameters
(Model Order 40)
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Example

AR Model Parameters
(Model Order 60)
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Example

AR Frequency Spectrum – No Fault
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Example

AR Frequency Spectrum – Outer Race Fault
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Example

AR Frequency Spectrum – Rolling Element Fault
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Example

AR Frequency Spectrum – Inner Race Fault
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Using Parametric Models as Diagnostics Tools

Nearest Neighbour Classification

Different time series (vibration signals) can 
represent different conditions (faults), but these 
are often difficult to distinguish.

When converted to models they become easier to 
distinguish or group into sets with similar 
characteristics.
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Nearest Neighbour Classification

The difference between two sets can be defined 
as

Where fo and fm are the probability density 
functions of two different variables.



November 8, 2010 Page 37

Nearest Neighbour Classification

When xo and xm are multidimensional, normally 
distributed variables, with mean values μo and μm
and the covariance matrices Σo and Σm, then,

Where:  |A| is the determinant of matrix A,
tr(A) is the trace of matrix A,
A-1 is the inverse of matrix A,

and A’ is the transpose of matrix A.
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Nearest Neighbour Classification

If only a sample of data is available, (exact 
probability density functions are not known) then 
an approximation can be made using

Where the ^ represents estimated values based 
on the sample data.
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Nearest Neighbour Classification

Given that each sample time series has a 
corresponding AR model, a dissimilarity number 
can be determined.

Where:  σj
2 – sample covariance,

aj – AR model parameter,
pj – AR model order,

and Co – estimated covariance function.
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Nearest Neighbour Classification

Knowing 2d(x(o), x(m)) (the dissimilarity between x(o)

and x(m)) we can determine the probability of 
misclassification of a sample as
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Nearest Neighbour Classification

Or, the probability of fault existence (the likelihood 
of a fault being present when comparing new 
samples with samples known to represent fault-
free conditions.



Experimental Results 
(using the same data as above)
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Experimental Results 
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Experimental Results 
(using the same data as above)
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Nearest Neighbour Classification

Good example of a trending and classification 
parameter that can distinguish between fault-free 
conditions and various types of faults, as well as 
distinguish between each fault type.

However, this procedure needs known fault data.

And, what happens if faults are poorly 
distinguishable (early stages) or if the data is 
noisy.
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Nearest Neighbour Classification

Note: 

This is an example of supervised classification. 

The user defines the specifics of classification (# 
of classes, etc.). 

Some prior knowledge of the system and signals 
is required.
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Inductive Inference Classification

Reducing the data to a common form removes 
redundant/unneeded data. 

Classification based on the length of description 
of a data set is then possible. 

Example: classify people using as few 
parameters as possible.

Physical atributes - sex
- height/weight
- hair colour
- eye colour, etc.
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Inductive Inference Classification

By randomly dividing the sample into groups, then 
shifting members between groups we can zero in 
on the shortest (optimum encoded) description of 
all the groups (spectra). 

Descriptions based on sample statistics.

This is an example of unsupervised classification.

Mechefske, C.K. and D. Plummer, “Gradual Deterioration Trending and Fault 
Diagnosis in Cutting Tools Using Inductive Inference Classification”, Int. Journal 
of Machine Tools Manufacture, Design, Research and Application, Vol.34, No.4, p591-
601, 1994. 
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Inductive Inference Classification

Example

Data to be Classified – Shown in True Classes.
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Inductive Inference Classification

Example

Data Description Length Estimation Equations
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Inductive Inference Classification

Example

Estimated Data Description Lengths for Various Classifications.
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Inductive Inference Classification
Experimental Results – Low Speed Rolling Element Bearings

NOF

ORF

IRF

REF

COM1
ORF & REF

COM2
ORF, REF

& IRF
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Inductive Inference Classification
Experimental Results – Low Speed Rolling Element Bearings

Classification results for all fault types.
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Inductive Inference Classification
Experimental Results – Low Speed Rolling Element Bearings

AR model based frequency spectra from low speed rolling 
element bearing gradually deepening outer race fault.
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Inductive Inference Classification
Experimental Results – Low Speed Rolling Element Bearings

Estimated data description lengths vs. gradual development of 
an outer race fault.
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Inductive Inference Classification
Experimental Results – Low Speed Rolling Element Bearings

Estimated data description lengths vs. gradual development of 
an outer race fault. (1 – NOF, 2 – ORF, 3 – REF, 4 – IRF, 5 – COM1, 6 – COM2)
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Inductive Inference Classification

Flowchart of 
procedural steps.
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Inductive Inference Classification

Experimental Results – Cutting Tool Deterioration
Accelerated wear rate tests 1 – 4

Regular wear rate test – 5

Feed rate and speed conditions
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Inductive Inference Classification
Experimental Results – Cutting Tool Deterioration

AR frequency spectra for test # 1.
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Inductive Inference Classification
Experimental Results – Cutting Tool Deterioration

AR frequency spectra for test # 2.
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Inductive Inference Classification
Experimental Results – Cutting Tool Deterioration

AR frequency spectra for test # 3.



November 8, 2010 Page 62

Inductive Inference Classification
Experimental Results – Cutting Tool Deterioration

AR frequency spectra for test # 4.
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Inductive Inference Classification
Experimental Results – Cutting Tool Deterioration

Classification results – accelerated wear rate test data.
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Inductive Inference Classification
Experimental Results – Cutting Tool Deterioration

AR frequency spectra for test # 5 (normal wear rate).
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Inductive Inference Classification
Experimental Results – Cutting Tool Deterioration

Classification results – normal wear rate test data.
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Inductive Inference Classification
Experimental Results – Cutting Tool Deterioration

Estimated data description lengths vs. gradual deterioration. 
Baseline – minimal wear. (1 – test #1, 2 – test #2, 3 – test #3, 4 – test #4)
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Inductive Inference Classification
Experimental Results – Cutting Tool Deterioration

Estimated data description lengths vs. gradual deterioration. 
Baseline – advanced wear. (1 – test #1, 2 – test #2, 3 – test #3, 4 – test #4)
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Inductive Inference Classification
Experimental Results – Cutting Tool Deterioration

Estimated data description lengths vs. gradual deterioration. 
Baseline – minimal wear. (test #5 - normal wear rate)
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End


